If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=19x
We move all terms to the left:
8x^2-(19x)=0
a = 8; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·8·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*8}=\frac{38}{16} =2+3/8 $
| 5(3y-7)+y=3(y-3) | | 3+9x=63+x(3)-9x | | 20*2^x-(3^x)/9-308=0 | | 25x+5=19x-1 | | 2x+x+50=180 | | 4x+2x/11(4x-1)=17/3 | | 5(2^(x+2))-3^(x-2)-308=0 | | 4x-15=2+x | | 4x+18=7x-51 | | 8x—2-5x=8 | | 4.5p=72-3 | | -10=16x-2-15x | | 7.5y-32.25=17 | | k/8=2.5 | | 3.7=c/9 | | (3x+1)=31 | | -13=4.1+y | | 18.8=4.7z | | -2.4b=28.8 | | -11=4.7+s | | -6.4=x-5.9 | | 7/9d=8/9 | | 11-46=5(x-2)-5 | | -4.4r=22 | | 2x+18-x=180 | | 9(k-6)-(8k+9)=3 | | 600=x+(1.5*x) | | 11-17z=5-20z | | 600=(600/x)+(1.5*x) | | -19f-9=-18f+15-7 | | 15.75=500×.5r | | 600=600/x+1.5*x |